
Linguacodus: a synergistic framework for
transformative code generation in machine
learning pipelines
Ekaterina Trofimova1, Emil Sataev1 and Andrey Ustyuzhanin2,3

1 Faculty of Computer Science, Higher School of Economics, Moscow, Russia
2 IFIM, National University of Singapore, Singapore, Singapore
3 School of Computer Science & Engineering, Constructor University, Bremen, Germany

ABSTRACT
In the ever-evolving landscape of machine learning, seamless translation of natural
language descriptions into executable code remains a formidable challenge. This
article introduces Linguacodus, an innovative framework designed to tackle this
challenge by deploying a dynamic pipeline that iteratively transforms natural
language task descriptions into code through high-level data-shaping instructions.
The core of Linguacodus is a fine-tuned large language model, empowered to
evaluate diverse solutions for various problems and select the most fitting one for a
given task. This article details the fine-tuning process and sheds light on how natural
language descriptions can be translated into functional code. Linguacodus represents
a substantial leap towards automated code generation, effectively bridging the gap
between task descriptions and executable code. It holds great promise for advancing
machine learning applications across diverse domains. Additionally, we propose an
algorithm capable of transforming a natural description of an ML task into code with
minimal human interaction. In extensive experiments on a vast machine learning
code dataset originating from Kaggle, we showcase the effectiveness of Linguacodus.
The investigations highlight its potential applications across diverse domains,
emphasizing its impact on applied machine learning in various scientific fields.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords Automated code generation, Large language models, Machine learning pipelines

INTRODUCTION
Automated code generation from natural language, a field often referred to as natural
language programming (NLP), holds the promise of simplifying programming tasks and
enhancing the software development process (Lei et al., 2013; Desai et al., 2016; Wang
et al., 2023), particularly in the field of machine learning (ML) (Chandel et al., 2022). The
demand for efficient ML solutions is continuously rising, showcasing the significance of
this technology in streamlining programming tasks and enhancing software development
processes. ML has transformed human lives and significantly impacted scientific research
and engineering (Alpaydin, 2021). It has emerged as a standard tool in various domains,
revolutionizing the way tasks are approached and problems are solved (Jung, 2022). With
the increasing reliance on ML solutions, the ability to swiftly and accurately translate
ambiguous task descriptions into functional code has become increasingly vital.

How to cite this article Trofimova E, Sataev E, Ustyuzhanin A. 2024. Linguacodus: a synergistic framework for transformative code
generation in machine learning pipelines. PeerJ Comput. Sci. 10:e2328 DOI 10.7717/peerj-cs.2328

Submitted 1 May 2024
Accepted 22 August 2024
Published 23 September 2024

Corresponding author
Ekaterina Trofimova,
etrofimova@hse.ru

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.2328

Copyright
2024 Trofimova et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2328
mailto:etrofimova@�hse.�ru
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2328
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Early endeavors in code generation from natural language primarily rely on rule-based
systems and template-based approaches (Gulwani, Polozov & Singh, 2017). These methods
suffer from limited expressiveness and scalability as they struggle to accommodate the
variability and complexity of human and coding languages (Allamanis et al., 2018).

Vaswani et al. (2017) introduce the Transformer architecture, a cornerstone in many
natural language processing tasks, including code generation. Transformer-based models
excel in capturing long-range dependencies and contextual information, leading to
significant improvements in code generation quality. The synergy of deep learning
techniques and the availability of extensive training data has transformed the landscape of
code generation from natural language (Vaithilingam, Zhang & Glassman, 2022), paving
the way for the development of large language models (LLMs). These LLMs exhibit the
capability to learn intricate mappings between textual inputs and executable code.

While significant progress has been made in code generation from natural language,
there remains a substantial gap in effectively transforming complex machine learning task
descriptions into precise, executable code (Yin et al., 2022; Wen et al., 2024). Current
generative models often produce common yet suboptimal code snippets based on textual
input, failing to capture the nuanced requirements of specific ML tasks. This gap exists
primarily due to the complexity and variability of ML tasks, which often require domain-
specific knowledge and customized approaches. The challenge also lies in converting
detailed ML task narratives into a structured series of code components, as LLMs excel
more with direct instructions. By “instructions” we mean the high-level guidance provided
to the model for generating specific outputs (see Methodology Section). Moreover, the
difficulty is in maintaining coherence and logical flow throughout longer code sequences
necessary for complete ML solutions. Addressing this knowledge gap can accelerate the
development and prototyping of ML solutions, democratize ML development, and
enhance the reproducibility and standardization of ML research.

Our approach, Linguacodus, seeks a more accurate and flexible solution. It involves a
two-step process: first, it transforms the human-provided ML task descriptions into
explicit, high-level instructions. This step ensures the instructions are clear, verifiable, and
understandable to the user, laying a solid foundation for the next phase. Then, these high-
level instructions are translated into machine-compilable code representation, specifically
Python code in our case, with the potential for extension to other programming languages
(Fig. 1). This method not only accommodates the intricate nature of ML tasks but also
enhances the control and precision in the code generation process, meeting the need for
understanding and controlled production of code in ML applications.

By converting human language into executable code, Linguacodus enables quick
prototyping, ease iteration, and facilitate the deployment of ML models, potentially
democratizing software development. This breakthrough allows individuals without
extensive coding skills to engage in creating complex ML tasks, promoting innovation
across various disciplines. The drive for such technology underlines a vision to broaden
ML’s reach and impact, simplifying the development process and inviting a wider audience
to contribute to technological advancements. Portions of this text were previously
published as part of a preprint (Trofimova, Sataev & Ustyuzhanin, 2024).

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 2/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Our main contributions can be summarized as follows:
A controllable transformation framework: We present a framework for the controlled

transformation of ML task descriptions into solution instructions, involving fine-tuning
the Llama 2 model using pairs of ML task descriptions and instructions.

Instruction-based sequential generation: We demonstrate the efficacy of executing
instructions for sequential generation, producing compilable code with promising results
based on evaluation metrics.

The rest of the article is organised as follows. ‘Related Work’ explores the application of
LLMs in code generation, text-to-code conversion, controllable generation, and
automating problem-solving tasks, shedding light on the limitations of LLMs in ML code
synthesis. ‘Methodology’ provides an overview of the Linguacodus framework.
‘Experimantal Results and Analysis’ describes the experiments and validation of the
approach, highlighting the effectiveness of Linguacodus in transforming plain English
descriptions of ML tasks into executable code. ‘Discussion’ and ‘Limitations’ discusses and
critically examines the limitations our approach. ‘Future Work’ suggest the future
perspectives of the work. Finally, ‘Conclusion’ summarizes and concludes the article.

RELATED WORK
Code generation from developer’s requirements has emerged as a compelling area of
research, bridging the realms of NLP and programming languages (Liu et al., 2020).
Traditional methodologies for code synthesis from human language have historically
leaned on formal semantic representations of natural language (Winograd, 1972; Harel
et al., 1990; Buse &Weimer, 2012). However, formal specifications require manual creation
and maintenance, making them labor-intensive and difficult to scale for large codebases or
complex systems (Raychev, Vechev & Yahav, 2014).

User

Plain English
description of a

ML task

The best high-
level code
instruction

ML
code

Fine-tuned
Llama-2

Multi-role
LLM

Improved
instruction

LLM

Figure 1 Linguacodus takes in the user-provided description of a machine learning task and
generates an optimal solution instruction. This instruction is then optionally refined using Multi-
role LLM. Another LLM is employed to infer executable ML code based on the enhanced instruction. The
resulting code represents the most effective solution for the specified task.

Full-size DOI: 10.7717/peerj-cs.2328/fig-1

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 3/32

http://dx.doi.org/10.7717/peerj-cs.2328/fig-1
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Ling et al. (2016) automatically predict code snippets directly from natural language
inputs by proposing latent predictor networks (LPN). LPN encapsulates the latent variable
model for capturing the underlying structure of the input natural descriptions, and the
predictor network for mapping the latent representations to corresponding code snippets.

Meanwhile, Rabinovich, Stern & Klein (2017), Yin & Neubig (2017) and Yin & Neubig
(2018) emphasize the importance of incorporating syntax awareness into the neural
network architectures. The researchers leverage the Abstract Syntax Tree to capture the
well-defined structure in the target programming syntax. Additionally, long short-term
memory (LSTM) networks are employed to capture long dependencies in natural language
sequences. However, these methods predominantly rely on a single NL statement.

In contrast, Agashe, Iyer & Zettlemoyer (2019) tackle the task of interactive general-
purpose code generation by incorporating a full sequence of previous natural language and
code blocks as context within a Python Jupyter notebook environment (Kluyver et al.,
2016). Still, the work is limited to the domain defined by the JuICe dataset, consisting of
code snippets and corresponding markdowns, and does not utilize general task
descriptions as inputs for code generation.

Utilizing vast amounts of code and natural language data has been made possible
through pre-training techniques (Radford et al., 2018; Devlin et al., 2018). By leveraging
pre-trained models, like CodeBERT (Feng et al., 2020), researchers strive to capture
comprehensive representations of both code and language semantics. This enables the
models to produce code from natural language descriptions that are not only more
accurate but also contextually relevant. Such models offer versatility in code-related tasks,
including code generation, summarization, and recommendation.

CoditT5 (Zhang et al., 2022) is another language model that generates edit-based output
sequences from corrupted input sequences. Models like CoditT5 enhance code generation
capabilities, aligning them more closely with user requirements.

Modern code generation approaches often rely on general-purpose transformers,
exemplified by GPT-3. Codex (Chen et al., 2021), a notable model in this category,
showcases the potential to generate code snippets directly from natural language prompts.
AlphaCode (Li et al., 2022) extends this foundation, emphasizing the significance of code
diversity and improving contextual understanding in LLMs.

In parallel, text-to-code conversion has gained prominence. PaLM-Coder (Chowdhery
et al., 2023) presents a method for converting natural language descriptions into code,
focusing on Java code generation. OpenAI models (Achiam et al., 2023; Bubeck et al., 2023)
have further extended the capabilities of LLMs in understanding and generating code from
textual prompts.

Controllable code generation is an emerging subfield with significant potential. CTRL
(Keskar et al., 2019) is a conditional language model for controlled code generation. The
model focuses on allowing users to specify conditions that influence the generated code,
providing a level of control over the output. Texygen (Zhu et al., 2018) is a benchmarking
platform for evaluating text generation models, including those designed for code

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 4/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

generation. This platform facilitates the assessment of controllable code generation models
by offering standardized evaluation metrics and tasks.

In automating problem-solving tasks, researchers have actively explored solutions such
as AutoGluonTabular (Erickson et al., 2020) and H2O AutoML (LeDell & Poirier, 2020).
These frameworks offer automated machine learning capabilities to streamline the model
development process and improve prediction accuracy.

In particular, LightAutoML (Vakhrushev et al., 2021) tailors itself to the distinctive
needs of large financial services companies companies. It provides solutions for handling
large datasets with diverse types, non-stationary data, and specific validations, making it
well-suited for complex financial analysis tasks.

Another recent AutoML framework, HuggingGPT (Shen et al., 2024), utilizes ChatGPT
for task planning, model selection, subtask execution, and result summarization.
HuggingGPT demonstrates versatility across a wide range of AI tasks, including natural
language understanding and automated problem-solving.

Nair et al. (2023) present the dialog-enabled resolving agents (DERA), aiming for
accurate output generation. DERA enhances the conversational abilities of LLMs by
incorporating two distinct agent types: a researcher, responsible for processing
information and identifying critical problem components, and a decider, capable of
autonomously integrating the researcher’s information and making judgments on the final
output. Although the DERA paradigm was initially used in healthcare, one can notice the
potential applicability of multi-agent LLM in various training fields.

While automated machine learning offers structured workflow optimization, ML code
generation based on natural language descriptions provides seamless integration into
existing systems and customization for domain-specific tasks.

The recent advancements in code generation driven by LLMs have witnessed notable
progress. Thus, OpenAI GPT models (Achiam et al., 2023; Bubeck et al., 2023), although
not explicitly designed for code generation, have demonstrated proficiency in generating
code snippets and understanding programming-related prompts. The generative
capabilities of GPT models make them versatile tools for interpreting and translating
natural language descriptions into executable code.

Google’s PaLM 2 (Anil et al., 2023) undergoes pre-training on a vast dataset
encompassing web pages and source code, making it valuable for code debugging,
completion, and generation across multiple programming languages. The model’s dual
focus on semantic parsing and language model pre-training enhances its ability to
comprehend and generate code based on diverse natural language inputs.

One of the leading publicly available LLMs for code generation is Code Llama (Roziere
et al., 2023). An extension of Llama 2 (Touvron et al., 2023), Code Llama comes in two
variations: a code producer and its instruction-specific refinement, Code Llama-Instruct.
Code Llama-Instruct surpasses Code Llama in providing more helpful and secure
responses in natural language, ensuring a more dependable performance. However, the
generated instructions are generally broad-purpose and lack easy assessability regarding
their suitability for specific tasks.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 5/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

While OpenAI’s ChatGPT and similar LLMs have demonstrated remarkable
capabilities in various natural language understanding tasks, they do have some inherent
limitations in the context of ML code generation:

1) Lack of specificity: LLMs often generate code snippets that lack specificity for specific
ML tasks. The generated code may be overly general and not finely tailored to the
requirements of complex machine learning workflows.

2) Limited control over code generation: Users have limited control over the fine-tuning
process of LLMs, making it challenging to enforce specific guidelines or constraints
during the generation of ML code. This lack of control may result in variations in code
quality and suitability for different tasks.

3) Handling ambiguity: Natural language descriptions of ML tasks can be inherently
ambiguous. LLMs may struggle to disambiguate between multiple potential
interpretations, leading to code snippets that may not accurately capture the intended
meaning of the task.

4) Inability to learn task-specific patterns: While proficient in learning patterns from
diverse data, LLMs may face challenges in capturing task-specific patterns relevant to
ML code generation. This limitation can result in generated code that lacks the
specificity required for specialized tasks.

5) Evaluation metrics and validation: The evaluation metrics for assessing the quality of
generated code may not always align with the specific requirements of ML tasks. LLMs
may prioritize generating syntactically correct code without necessarily ensuring the
semantic correctness or optimization of the generated solutions.

Addressing these challenges requires a hybrid approach involving specialized ML code
datasets and dimensional reduction within the learning space for LLM fine-tuning. The
Code4ML (Drozdova et al., 2023) is a comprehensive corpus comprising of a) Kaggle
challenge descriptions in natural language, b) Jupyter notebooks and their scores, c)
Python code snippets, and d) competition-related metadata. This metadata includes
formal descriptions of challenge datasets and scoring metrics. Code4ML relies on a
knowledge taxonomy tree (Fig. 2) to categorize various Jupyter notebook code snippets. A
description of a challenge solution in terms of the classes of this taxonomy significantly
reduces the dimensionality of a code generation problem compared to the direct
generation of code by using task description as a prompt. However, Code4ML lacks
annotation for all code snippets. This limitation is addressed through the taxonomy-based
categorization introduced by Berezovskiy et al. (2023).

METHODOLOGY
This section presents a comprehensive overview of the Linguacodus. Figure 3 depicts the
two stages of the framework. Initially, utilizing the fine-tuned Llama 2, we generate the
most appropriate instruction, encapsulating the high-level core information of a
generalized ML solution, tailored to a specific ML task. Subsequently, this instruction

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 6/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Model Train

Data
Transform

Exploratory
Data

Analysis

Data
Extraction

Environment
Data export

Hyperparam
Tuning

feature engineering

save model

load pretrained

predict on train

compute train metric

train model

choose model class

sort values
drop columns

concatenate

filter

split

randomize order

data type conversions

normalization

correct missing values

remove duplicates

create dataframe

count data typescount unique values

count missing values

count duplicates

load from csv
load from zip

load from disk

load from sqlload from url

import modules

set options

install modules

save to csv

define search model

define search space

train on grid

Model
Evaluation

compute test metric

predict on test

categorify

augment

merge

groupby

rename columns

Model
Interpretationprint shapley coeffs

features selection

Visualization

missing values

distribution

learning history

plot predictions
model coefficients

heatmap

relationship

prepare data loader

prepare x and y

reshape

string transform

init hyperparams
build layers

cross validate

find best model class

find best score

plot metrics
images

wandb

time series

prepare outputfind best params

statistical test

Debug
list files

show shape

show unique values

show table

commented

show table attributes

show data types

show columns

Code Block
Type

Figure 2 Code4ML taxonomy tree. Reproduced from Drozdova et al. (2023), with permission of the authors.
Full-size DOI: 10.7717/peerj-cs.2328/fig-2

Ranked solutions
Ranked

Instructions

High-level representation
of ML solutions

Prompt Prompt
ML tasks

descriptions

Prompt Response

Llama 2

Data
type

Metric
type

Llama
inference

#1

#2

#3

Llama fine-tuning

Prompt

Faulty
logic

Best
instruction

Find best,
improve

Instruction generation

ML code by instructions
generation

Data
preprocessing

Model
training

Model
architecture

+

1

2

+

3

LLM LLM LLM
LLM LLM

Llama 2 fine-tuning

Figure 3 Overall Linguacodus training framework. Full-size DOI: 10.7717/peerj-cs.2328/fig-3

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 7/32

http://dx.doi.org/10.7717/peerj-cs.2328/fig-2
http://dx.doi.org/10.7717/peerj-cs.2328/fig-3
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

undergoes a sequential transformation into programming code through prompts with
GPT-3.5.

Instruction creation
To extract the high-level code instructions, we’ve devised a four-stage framework:

1) High-level solution representation: We begin by creating high-level representations of
ML solutions. To refine the quality of our dataset, the solutions undergo a ranking
process based on their scores. Each solution is intricately linked to the natural language
description of the ML task. Linguacodus utilizes the LLM to extract critical information
regarding data preprocessing, model architecture, and the training procedure from
existing code solutions. This information forms the high-level ML instruction. Figure 4
illustrates the precise input prompt presented to the model.

2) Llama 2 fine-tuning: Then, we utilize the acquired instructions as inputs for fine-tuning
the open-source Llama 2 7b model. To ensure the relevance of the instructions to the
machine learning (ML) task, we leverage the original code’s quality evaluation in the
form of a score. The retrieved instructions are ranked based on their significance to the
ML task. Furthermore, we furnish the Llama 2 model with essential information
presented as prompts, including the task description, metric details, and data type
information. The prompt-completion pair used in this stage is visually depicted in
Fig. 5, with the separation marked by the [/INST] token. This comprehensive approach
enhances the fine-tuning process, incorporating the quality ranking of instructions and
pertinent task details for optimal model adaptation. Llama models have been pre-
trained on vast amounts of data. By fine-tuning, we leverage this extensive knowledge
and adapt it to specific tasks, often achieving state-of-the-art results with less data and
time. The fine-tuning details are summarised in “Llama 2 Fine-Tunimg Details”.

3) Llama 2 inference: Next, we infer Llama 2 to select the top three most valuable
instructions by specifying their rank using a dedicated prompt, as shown in Fig. 6.

4) Iterative enhancing LLM responses through multi-agent LLM: The inferred
instructions then undergo further refinement with the assistance of multi-agent
LLM. The primary goal of multi-agent LLM is to identify any logical errors in the
provided instructions and subsequently choose the best option from the three variants,

"Get the main information about data preprocessing, model architecture
and model training from the code. Code: **Kaggle code**.

Figure 4 Prompt for ML instructions retrieving. Full-size DOI: 10.7717/peerj-cs.2328/fig-4

<s> token [INST] Get the main information about data preprocessing,
model architecture and model training for this problem. This solution
has the 1 place in rating. Data type: **Data type**. Metric type is:
Metric type. Problem: **Task description**. [/INST] **GPT-
resulted instruction** </s>

Figure 5 Llama 2 fine-tune input. Full-size DOI: 10.7717/peerj-cs.2328/fig-5

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 8/32

http://dx.doi.org/10.7717/peerj-cs.2328/fig-4
http://dx.doi.org/10.7717/peerj-cs.2328/fig-5
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

thereby enhancing the overall quality of the instructions. This intelligent processing is
elucidated in Figs. 7 and 8.

ML code by instruction generation
The second stage of our approach centers on the actual code generation, building upon the
instructions obtained in the previous step. In this phase, we harness the capabilities of
language models to transform these instructions into functional and well-structured code
that aligns with the underlying ML tasks.

Figure 9 precisely represents the sequential pipeline involved in the instruction-to-code
transformation. We have separated the code synthesis into the stages of data
preprocessing, model architecture, and model training. Additionally, we have also
introduced a submission block to enable the testing of results on the Kaggle platform. The
next step in this pipeline involves integrating all the generated code segments. To mitigate
the possible execution problems, Linguacodus employs an error-fixing procedure, running
it up to three times. In this process, the same LLM agent, responsible for integrating all
code components iteratively, inputs the errors without any additional specifications.

Imagine that you are a data analyst. Your objective is writing the
3rd place instruction for solving this machine learning task. Task:
Task description. The **Data type** data is used for the problem.
The metric type is **Metric type** for the problem. Your response
contains the main information about data preprocessing, model
architecture and model training.

Figure 6 Prompt for Llama 2 inference. Full-size DOI: 10.7717/peerj-cs.2328/fig-6

You are a researcher tasked with investigating the 3 options of
instruction for solving this machine learning task. Task: **Task
description**. The **Data type** data is used for the problem. The
metric type is **Metric type** for the problem.

Your response contains the main information about data preprocessing,
model architecture and model training. List the flaws and faulty logic of

sure we have all the errors.

Instruction option 1: **Instruction 1**
Instruction option 2: **Instruction 2**
Instruction option 3: **Instruction 3**

Figure 7 Prompt for multi-agent LLM for best instruction choice.
Full-size DOI: 10.7717/peerj-cs.2328/fig-7

You are resolver tasked with 1) find which of the instruction options the
researcher thought was best 2) improving the instruction 3) printing the

be sure we have the right meaningful instruction.

Figure 8 Prompt for multi-agent LLM for best instruction improvement.
Full-size DOI: 10.7717/peerj-cs.2328/fig-8

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 9/32

http://dx.doi.org/10.7717/peerj-cs.2328/fig-6
http://dx.doi.org/10.7717/peerj-cs.2328/fig-7
http://dx.doi.org/10.7717/peerj-cs.2328/fig-8
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

This phase forms the critical bridge between the high-level ML instructions and the
executable code, ensuring that the generated code adheres to the provided instructions and
produces practical solutions for the intended ML tasks.

EXPERIMENTAL RESULTS AND ANALYSIS
Dataset
Our research relies on the Code4ML dataset, focusing on Kaggle competitions
encompassing all metric categories except ‘points,’ ‘significance,’ and ‘custom loss.’ We
curate the top 75 solutions for retrieving high-level instructions from these competitions. It
is essential to highlight that specific contests may have fewer than 75 solutions available for
selection.

As a result, our training dataset comprises 395 natural language ML task descriptions
paired with 7,023 corresponding Kaggle solutions. Figure 10 overviews the prevalent
models featured in the selected solutions. Figure 11 illustrates the diversity of data types
used in the chosen Kaggle competitions. This work emphasizes ML tasks involving tabular
data. However, we do not restrict competitions to numeric tabular formats and consider
those involving time series or text data presented with tables.

To assess the effectiveness of our approach, we employ Kaggle competitions that are
recent and popular, featuring more than 500 participating teams, ensuring that the tasks
were unseen by our model. To approximate the distribution of the training competition
space, we randomly select ten machine learning tasks, with a majority operating on
numerical data and one each for text, time series, and image data.

Linguacodus generated instructions validation extends beyond the Kaggle platform,
encompassing ML competitions hosted on CodaLab (Pavao et al., 2023). All the data used
for validation and testing is not included in the training set.

Best
instruction

ML task
description

Your are a Python
programmer
assistant. Let's
generate code for this
instruction:

Data
preprocessing

description

Data Preprocessing:

Data Information:

Data
information

ML task
description

Using the generated
code for the Data
Processing, let's add
code for Model
Architecture for this
instruction:

Model
architecture
description

Model Architecture:

Data Information:

Data
information

Using the
generated Data
Processing,
Model
Architecture, and
Model training,
lets generate
submission.

Submission
information

Let's combine
the generated
code for Data
Processing,
Model
Architecture,
Model training
and
submission.

ML task
description

Using the generated
code for the Data
Processing, let's add
code for Model
Architecture for this
instruction:

Model training
description

Model Training:

Data Information:

Data
information

Error

LLM LLM LLM LLM LLM

Figure 9 Linguacodus instruction to code sequential transformation scheme. Full-size DOI: 10.7717/peerj-cs.2328/fig-9

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 10/32

http://dx.doi.org/10.7717/peerj-cs.2328/fig-9
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Baseline
The overall comparative model for our framework is vanilla GPT-3.5, considering its
prominence as a leading tool in natural language generation tasks. While other models
exist, such as CodeBERT, CoditT5, PalM-Coder, and CTRL, their suitability for
generating code from natural language task descriptions may be limited. Specifically,
CodeBERT and CoditT5 are primarily trained for synthesizing code snippets rather than
entire pipelines or comprehensive solutions. Therefore, GPT-3.5 is a more relevant and
established benchmark in transforming natural language into complete machine learning
pipelines. Additionally, GPT-3.5 demonstrates greater efficiency compared to Llama 2

time series
5 %

audio
2 %

text data
12 %

image data
29 %

tabular data
52 %

Figure 11 The competitions distribution based on the data type.
Full-size DOI: 10.7717/peerj-cs.2328/fig-11

 data_type/
metric

AUC
 categorization

accuracy
percentage

errors
 MSE

F-score
multiclass

Multiclass log
loss

Log loss MAE

Audio lightgbm - - - resnet-34 - - -

Image
densenet-161 efficientnet - Sequential efficientnetb7 vgg16

logistic
regression

lightgbm

Tabular lightgbm
RandomForest

classifier
lightgbm lightgbm lightgbm xgboost lightgbm lightgbm

Text RandomForest
classifier

logistic
regression

AUC
Bagging
regressor

bert
logistic

regression
xgboost -

Video - - - - - - myresnext -

Time series -
RandomForest

classifier
RandomForest

Regressor
lightgbm - bert

logistic
regression

-

Figure 10 The most popular model choice among retrieved Kaggle solutions based on metric and
data type. Full-size DOI: 10.7717/peerj-cs.2328/fig-10

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 11/32

http://dx.doi.org/10.7717/peerj-cs.2328/fig-11
http://dx.doi.org/10.7717/peerj-cs.2328/fig-10
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

(Zheng et al., 2024) and does not require payment, as GPT-4. Code Llama—Instruct is used
as a reference model for the Linguacodus Instruction Creation phase.

Experiments setup and analysis
In our experiments, we use GPT-3.5 for retrieving instructions from the ML solutions,
finding and improving the best instruction, and code generation. The selection of GPT-3.5
is driven by the consideration of balancing quality and inference time using the OpenAI
API. However, the framework is generally agnostic to the choice of large language model,
allowing for flexibility in utilizing different models based on specific requirements or
preferences.

To underscore the significance of the research, we compare the instructions generated
by the fine-tuned Llama 2 model and those inferred from Code Llama-Instruct. Our
evaluation extends beyond the Kaggle platform, encompassing ML competitions hosted on
CodaLab (Pavao et al., 2023) to ensure a thorough analysis. All the data used for validation
and testing is not included in the training set. We use the selected by Linguacodus best
instruction from the top three inferred by Llama 2. Additionally, we include examples of
instructions automatically improved with the multi-agent LLM technique through the
proposition of more advanced models for training.

Instructions produced by Code Llama-Instruct generally focus on the high-level
approach and conceptual steps involved in training a model. They emphasize data
preprocessing, model architecture, and training goals without delving into specific
implementation details. In contrast, the fine-tuned Llama 2 instructions provide detailed,
step-by-step breakdowns of the data preprocessing, model architecture, and model
training processes. While the former offers a broader overview suitable for understanding
the overall flow of the task, the latter caters to individuals seeking a more granular
understanding, providing a comprehensive guide with specific library references and
functions used at each stage (see “Sample Instructions Inferred by Code llama-Instruct and
Fine-Tuned llama 2”).

Generating complete and functional code solutions using LLM requires providing the
model with a detailed prompt or context outlining the task or problem statement. Hence,
well-suited task instructions are vital for code generation. Our pipeline, enhanced by
multi-agent LLM, can synthesize code via instructions of predefined quality, making
our approach unique and promising for assisting in ML code generation. “Sample Code
Genera by GPT-3.5 using Task Descriptions and Oure Refined Instructions” presents
sample code generated by vanilla GPT-3.5 with automatically improved instructions and
plain task descriptions. Raw GPT-3.5 output often contains code that cannot be compiled
without further specific model training, whereas Linguacodus produces ready-to-run code.

Comparative results
Table 1 reports the Kaggle scores and percentiles obtained for code generated by
Linguacodus and vanilla GPT-3.5 across a selection of randomly chosen machine learning
tasks. Table D.1 provides an overview of the mapping between task IDs and corresponding
Kaggle competition names. The percentiles reported in Table 1 reflect the relative standing

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 12/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

on the Kaggle competition leaderboards, where lower percentiles indicate superior
performance. The 0 percentile represents the top ranking, while higher percentiles indicate
lower positions on the leaderboard. This comparison provides insight into how the
generated solutions perform relative to the broader Kaggle community for each specific
competition.

The use of Kaggle leaderboard percentiles provides a comprehensive assessment of the
generated models. Unlike traditional code evaluation metrics, such as comparing Abstract
Syntax Trees (Knuth, 1968) or using code similarity measures (Song et al., 2024), ML task
performance requires a more nuanced approach. This is because the goal is to find the
most effective solution for a given ML task, which can vary significantly in implementation
while achieving similar results. Optimal solutions often emerge from novel combinations
of existing ML techniques, making direct code comparison less relevant. Moreover, the
effectiveness of generated code can only be truly measured by its performance on the
specific ML task.

As shown in Table 1, Linguacodus consistently produces compilable code,
outperforming vanilla GPT-3.5 solutions across specified machine learning metrics. Both
Linguacodus and vanilla GPT-3.5 receive natural language descriptions and necessary
metadata for each machine learning task as input. To ensure a fair and unbiased
comparison, the code generated by both approaches undergoes up to three iterations of
error treatment.

Kaggle, as a competitive platform, traditionally demands significant investment of time
and expertise from its participants. Engaging in Kaggle competitions often requires deep
understanding of the field and substantial time commitment. Our pipeline for
transforming ML task descriptions into code offers a markedly more efficient alternative.

This approach significantly reduces the time and expertise required to bridge the gap
between task descriptions and executable code, making machine learning development
more accessible. While the OpenAI GPT-3.5 API generates a default solution (without

Table 1 The sample results of generated ML code validated on the Kaggle platform. For each competition ID, the comparative scores and
percentiles on the Kaggle competition leaderboard are provided. Lower percentiles indicate superior performance, � denotes an uncompilable
solution. The best score results are highlighted in bold.

Id Data type Metric Linguacodus score Linguacodus percentile GPT-3.5 score GPT-3.5 percentile

C1 Tabular rmse 0.059 0 � �
C2 Tabular roc-auc 0.948 66 0.943 68

C3 Time series rmse 15.409 0 24.136 21

C4 Text mcrmse 0.470 58 0.548 81

C5 Tabular roc-auc 0.773 77 0.752 80

C6 Image mean cosine similarity 0.714 0 � �
C7 Tabular rmse 0.578 69 0.600 80

C8 Tabular mae 1.387 52 1.978 96

C9 Tabular mae 366.892 82 380.284 93

C10 Tabular roc-auc 0.862 76 � �

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 13/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

error treatment process) in approximately 6 s, our pipeline averages 44 s on an A100 GPU.
This process involves generating three instructions, correcting them, and sequentially
generating code. Despite the longer processing time compared to GPT-3.5, our approach
consistently yields superior results.

DISCUSSION
As mentioned in ‘Related Work’, the recent advancements in code generation driven by
LLMs have made significant strides, yet several challenges remain. Table 2 discusses how
these issues are addressed with Linguacodus.

LIMITATIONS
Despite the advancements presented by Linguacodus in addressing the challenges outlined
in the section ‘Related Work’, there are several limitations that warrant consideration. The
Code4ML dataset used to train Llama 2, which forms the foundation of Linguacodus,
includes competitions only up to 2021. This temporal limitation means that the model may
not fully cover the entire range of ML tasks and techniques, particularly recent emergent
methods, potentially affecting its performance on cutting-edge problems.

Multi-agent LLM occasionally exhibits suboptimal performance compared to
unprocessed Linguacodus instructions, emphasizing the role of context in task’s
complexity. Ethical considerations surrounding biases and potential misuse of generated
code highlight the need for responsible deployment. Linguacodus faces challenges when
tasks deviate significantly from those fine-tuned on Llama 2, suggesting a need for dataset
enrichment.

Insufficiently detailed instructions arise when tasks lack comprehensive descriptions,
calling for more explicit task information. Recognizing that multi-agent LLM may not
consistently outperform initially inferred instructions, human intervention is proposed to
select the best instruction. This highlights the need for a balanced approach that combines
the strengths of automated models with human judgment in refining outputs.

Table 2 Comparison of Linguacodus with other language models.

Issue Description

Lack of specificity Linguacodus aims to provide more specific and tailored instructions for ML tasks by focusing on high-level
information extraction rather than detailed code snippet classification in comparison with LLMs like CodeBERT
(Feng et al., 2020) and CoditT5 (Zhang et al., 2022).

Limited control over code
generation

Ranked instructions allow for a controlled transformation process, providing a structured framework for code
generation. While code-related (Anil et al., 2023; Roziere et al., 2023) and general-purpose (Achiam et al., 2023;
Bubeck et al., 2023) LLMs do not offer the generation control tools, Linguacodus’ users can choose from the top-
ranked instructions, offering control over the generated code.

Handling ambiguity The ranking process, coupled with the fine-tuning of LLMs, enhances the precision of instructions by prioritizing those
that align most closely with the task descriptions, mitigating potential ambiguities, making Linguacodus on par or
even better than OpenAI models (Bubeck et al., 2023), but open-source.

Inability to learn task-specific
patterns

Leveraging the fine-tuning process with Llama 2 7b on task-specific details allows the model to adapt and learn
patterns specific to ML tasks, enhancing the quality and relevance of the generated instructions.

Evaluation metrics and
validation

Compared to evaluation metrics in models such as Texygen (Zhu et al., 2018), the ranking process, involving
evaluation scores and task-specific details, is a robust validation mechanism for the generated instructions, ensuring
their alignment with ML tasks and promoting solutions that adhere to evaluation metrics.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 14/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

FUTURE WORK
The temporal limitation of the training dataset underscores the importance of ongoing
model updates and the potential for performance gaps in very recent or rapidly evolving
areas of machine learning. This observation points to a development of a dynamic
framework for enriching the ML data corpus. Such a framework would allow for
continuous integration of new ML techniques, datasets, and competition results, ensuring
that models like Linguacodus remain current and effective across the evolving landscape of
machine learning tasks.

Another promising direction for future work involves exploring alternative, more
deterministic approaches to constructing high-level instructions. One such approach is the
development of a graph-instruction methodology. This could enable a more structured
representation of the ML task, allowing for better assessment of intermediate generation
steps and interpretability. By mapping the natural task description to a graph-based
representation, we could potentially achieve greater transparency in the instruction
generation process, facilitating easier evaluation and refinement of the model’s outputs.

CONCLUSION
In this article, we introduce a comprehensive approach to transforming unstructured ML
task descriptions into executable code, presenting the novel Linguacodus model.
Leveraging the Code4ML dataset, which encompasses a rich collection of Python code
snippets, contest summaries, and data descriptions from Kaggle competitions, our
methodology capitalizes on the dataset’s valuable competition-related metadata, data
types, and scoring metrics. Inspired by the knowledge taxonomy tree introduced in
Drozdova et al. (2023), we adopt a similar organizational framework to achieve
dimensional reduction in our ML task description-to-code synthesis approach. However,
our approach differs in that it focuses on high-level information extraction rather than
individual code snippet classification. This strategic shift simplifies and streamlines the
code generation process, making it more efficient and adaptable.

Linguacodus is structured into two phases: synthesizing high-level ML solution
instructions and transforming these instructions into functional code. To generate
instructions, the Llama 2 model is fine-tuned on the Code4ML corpus. The top three
instructions are then inferred and further refined with the assistance of multi-agent LLM,
ensuring the highest quality instructions for subsequent code generation. The second
phase involves translating these refined instructions into well-structured and executable
code segments, encompassing data preprocessing, model architecture, model training, and
submission block generation. This transformation bridges the gap between high-level ML
instructions and practical code, ensuring alignment with the underlying ML tasks.

Our approach’s effectiveness is validated through experiments on Kaggle competitions
that are not part of our training data. The results demonstrate that the generated code is
compilable and aligns well with the evaluation metrics. We also compare the performance
of multi-agent LLM and unprocessed Code Llama—Instructions, highlighting the need for
further refinement in multi-agent LLM’s algorithmic approach to achieve superior solution
quality consistently.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 15/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

In summary, the research provides an innovative and efficient solution for code
generation from ML task descriptions, showcasing the capabilities of Linguacodus. By
capitalizing on the Code4ML dataset’s wealth of resources and introducing a structured
approach to instruction synthesis and code generation, we bridge the gap between natural
language task descriptions and executable code, making machine learning development
more accessible and efficient.

LLAMA 2 FINE-TUNING DETAILS
To align natural language descriptions of machine learning tasks with high-level code
instructions extracted from ML code solutions, we fine-tune the Llama 2 model. Table A.1
presents the hyperparameters used in the Llama 2 fine-tuning process.

Table A.1 Llama 2 fine-tuning hyper-parameters.

LoRA parameters

LoRA attention dimension 64

Alpha parameter for LoRA scaling 16

Dropout probability for LoRA layers 0.1

4-Bit precision parameters

4-bit precision base model loading True

Compute dtype for 4-bit base models float16

Quantization type nf4

Nested quantization for 4-bit base models False

Training arguments parameters

Number of training epochs 1

Enable fp16/bf16 training False/False

Batch size per GPU for training 4

Batch size per GPU for evaluation 4

Enable gradient checkpointing True

Maximum gradient normal 0.3

Initial learning rate 2e-4

Weight decay 0.001

Optimizer AdamW

Learning rate schedule constant

Number of training steps −1

Ratio of steps for a linear warmup 0.03

Group sequences into same length batches True

Save checkpoint every X updates steps 500

Log every X updates steps 25

Sequence Fine-Tuning Parameters

Maximum sequence length None

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 16/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

SAMPLE INSTRUCTIONS INFERRED BY CODE
LLAMA—INSTRUCT AND FINE-TUNED LLAMA 2
This section presents a comparative analysis of instructions for various machine learning
tasks generated by three methods: Code Llama—Instruct; fine-tuned Llama 2 (best
instructions selected by Linguacodus); multi-agent LLM automatic improvement.

Our analysis focuses on four competitions: two from CodaLab and two from Kaggle.
Table B.1 summarizes the key information for these selected competitions. The set of tasks
represented in these competitions allows for a comprehensive comparison. We use the
competition names and task descriptions as prompts for instruction generation.

Tables B.2–B.4 showcase the retrieved instructions for CodaLab competition
“SHROOM—a Shared-task on Hallucinations and Related Observable Overgeneration
Mistake”. The first instruction adopts a high-level approach, focusing on the
overarching strategy and conceptual steps involved in training a model to identify
“hallucinations” in neural language model outputs. It significantly emphasizes data
preprocessing, model architecture, and training objectives while avoiding intricate
implementation details.

In contrast, the subsequent instruction provides a meticulous, step-by-step breakdown
of the data preprocessing, model architecture, and model training procedures. It intricately
outlines actions such as data loading using pandas, tokenization with the specific
Tokenizer class, fine-tuning a BERT-based model through the TensorFlow BERT library,
and tracking training progress using the TensorFlow TensorBoard API. This level of detail
makes it more suitable for direct implementation.

Table B.1 Competitions information.

Competition name Source Data
type

Metric type Task description

“SHROOM—a Shared-task
on Hallucinations and
Related Observable
Overgeneration Mistake”
(Pavao et al., 2023)

CodaLab Text Accuracy SHROOM challenges participants to identify outputs that are grammatically
correct but semantically inaccurate, in a binary classification task. The
competition focuses on detecting “hallucinations” in outputs from neural
language models across definition modeling, machine translation, and
paraphrase generation, with or without access to the model that generated these
outputs

“Climate Activism Stance and
Hate Event Detection
Shared Task” (Pavao et al.,
2023)

CodaLab Text f1 score The CASE 2024 competition at EACL 2024 focuses on three subtasks in the
context of climate activism: identifying hate speech, detecting targets of hate
speech (individuals, organizations, communities), and determining the stance
(support, oppose, neutral) of given texts.

“Stable diffusion—image to
prompts” (Reade, Cukierski
& Chow, 2023)

Kaggle Images Mean cosine
similarity

The competition aims to develop a model that can predict the text prompt that
corresponds to a given generated image, challenging the understanding of the
relationship between text prompts and images in text-to-image models. The goal
is to create embeddings for predicted prompts, ensuring robust prompt similarity
assessment, and exploring prompt engineering in the context of image
generation.

“Regression with a tabular
Paris housing price dataset”
(Reade & Chow, 2023f)

Kaggle Tabular Rmse Regression with a Tabular Paris Housing Price Dataset

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 17/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Table B.2 A sample instruction generated for “SHROOM—a Shared-task on Hallucinations and Related Observable Overgeneration Mistake”
competition by Code Llama - Instruct.

As a data analyst, I would start by preprocessing the text data to ensure that it is in a format that can be easily analyzed and processed. This may
involve removing stop words, stemming or lemmatizing the text, and converting the text to a numerical representation using techniques such as
bag-of-words or word embeddings.

Once the data is preprocessed, I would then build a binary classification model that can accurately detect grammatically correct but semantically
inaccurate outputs. This model architecture could include a combination of techniques such as word embeddings, recurrent neural networks
(RNNs), and convolutional neural networks (CNNs) to capture the nuances of language and detect patterns in the data.

To train the model, I would use a dataset of labeled examples, where each example is annotated with a binary label indicating whether the output is
grammatically correct but semantically inaccurate or not. I would then use this dataset to train the model using a suitable machine learning
algorithm, such as logistic regression or support vector machines (SVMs), and evaluate its performance using metrics such as accuracy, precision,
recall, and F1 score.

Overall, the goal of this task is to develop a model that can accurately detect “hallucinations” in outputs from neural language models, and to evaluate
its performance using appropriate metrics. By preprocessing the data and using a suitable model architecture, I believe that I can develop a model
that can accurately detect these hallucinations and improve the quality of the outputs generated by the neural language models.

Table B.3 The best out of top-3 sample instruction generated for “SHROOM—a Shared-task on Hallucinations and Related Observable
Overgeneration Mistake” competition by fine-tuned Llama 2.

Data preprocessing:

- The training data is loaded from a CSV file using pandas.

- The test data is loaded from a CSV file using pandas.

- The training data is split into training and validation sets using the train_test_split function from sklearn.

- The training data is further processed by converting the text data into tokenized sequences using the Tokenizer class from nltk.

- The tokenized sequences are then converted into input IDs and attention masks using the TensorFlow SequenceClassification API.

Model architecture:

- The model architecture used is a BERT-based model.

- The BERT model is loaded from a pre-trained checkpoint using the BERTCheckpoint class from the TensorFlow BERT library.

- The BERT model is then fine-tuned on the training data using the TensorFlow TensorBoard API.

- The fine-tuned BERT model is used as the base model for the classification task.

Model training:

- The model is trained using the TensorFlow TensorBoard API.

- The training data is used to train the model for a specified number of epochs.

- The training progress is monitored using the TensorFlow TensorBoard API.

- The trained model is then used to make predictions on the test data.

- The predictions are saved in a submission file for evaluation.

Table B.4 An automatically chosen and improved with multi-agent LLM best sample instruction generated for “SHROOM - a Shared-task on
Hallucinations and Related Observable Overgeneration Mistake” competition by fine-tuned Llama 2.

Data preprocessing:

. Load the training and test data from CSV files, ensuring that the data is properly formatted.

. Preprocess the text data to prepare it for model input. This may include tokenization and data cleaning if necessary.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 18/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

An instruction automatically improved with multi-agent LLM goes beyond by
suggesting a more advanced model for solving an ML task. Additionally, it specifies the
optimization algorithm and training metric, providing a more refined and advanced set of
instructions for users. Thus, the potential of multi-agent LLM in enhancing the quality and
sophistication of instructions for machine learning tasks.

Tables B.5–B.13 depict the triple instructions for the competitions “Climate Activism
Stance and Hate Event Detection Shared Task”, “Stable Diffusion—Image to Prompts” and
“Regression with a Tabular Paris Housing Price Dataset”, respectively. Once again, the
fine-tuned Llama 2 yields precise and straightforward instructions for generating accurate
code. Notably, these instructions are the optimal choice for the assigned tasks, aligning
seamlessly with the prompt specifications and achieving the highest solution rating.

Table B.4 (continued)

Model architecture:

. Choose an appropriate model architecture for this binary classification task. Consider using pre-trained models like BERT or GPT-3 as a starting
point.

. Fine-tune the selected model on the training data to adapt it to the specific task. Ensure that the architecture includes appropriate layers for text
processing and classification.

Model training:

. Set up the training process with the following components:

� Loss Function: Use binary cross-entropy as the loss function for binary classification.

� Optimizer: Select an optimizer like Adam.

� Metrics: Track accuracy as the evaluation metric.

. Train the model for a specified number of epochs, monitoring the training progress to avoid overfitting.

. Split the data into training and validation sets to evaluate the model’s performance during training.

Model evaluation:

. After training, evaluate the model on the validation set to assess its accuracy and other relevant metrics.

. Make necessary adjustments to the model or training process based on the evaluation results.

Model evaluation:

. Use the trained and validated model to make predictions on the test data.

. Save the predictions in a submission file for evaluation.

Table B.5 A sample instruction generated for “Climate Activism Stance and Hate Event Detection Shared Task” competition by Code
Llama—Instruct.

As a data analyst, I would start by preprocessing the data to ensure that it is in a format that can be easily analyzed and processed. This may involve
cleaning the data, removing any irrelevant or redundant information, and transforming the data into a format that can be easily analyzed by a
machine learning model.

Once the data is preprocessed, I would then move on to designing the model architecture. For the task of identifying hate speech, detecting targets of
hate speech, and determining the stance of given texts, a combination of natural language processing (NLP) and machine learning techniques would
be necessary.

(Continued)

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 19/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Table B.5 (continued)

To identify hate speech, I would use a technique called sentiment analysis, which involves analyzing the sentiment of a piece of text to determine
whether it is positive, negative, or neutral. To detect targets of hate speech, I would use a technique called entity recognition, which involves
identifying and extracting specific entities such as individuals, organizations, and communities from the text.

To determine the stance of given texts, I would use a technique called stance detection, which involves analyzing the sentiment of a piece of text to
determine whether it is supportive, opposing, or neutral.

Once the model architecture is designed, I would then train the model using the preprocessed data. The training process would involve feeding the
preprocessed data into the model and adjusting the model’s parameters to minimize the error between the model’s predictions and the true labels.

Throughout the training process, I would monitor the model’s performance using metrics such as accuracy, precision, recall, and F1-score. Once the
model is trained, I would evaluate its performance on a separate test set to ensure that it is generalizing well to new data.

Overall, the key to success in this machine learning task is to carefully preprocess the data, design an appropriate model architecture, and train the
model using a large and diverse dataset. By following these steps, I believe that it is possible to achieve high performance on the CASE 2024
competition at EACL 2024.

Table B.6 A sample instruction generated for “Climate Activism Stance and Hate Event Detection Shared Task” competition by Code Llama-
Instruct.

Data preprocessing:

- Read the training and test data from CSV files.

- Perform data cleaning and preprocessing steps, such as handling missing values, converting categorical variables to numerical codes, and encoding
text data.

- Split the data into training and testing sets.

Model architecture:

- Define the model architecture using a pre-trained language model (e.g., BERT) and a classification head.

- The model will be trained using a combination of binary cross-entropy loss and categorical cross-entropy loss.

Model training:

- Use the training data to train the model.

- Use the validation data to evaluate the model’s performance.

- Use the testing data to make predictions

Table B.7 An automatically chosen and improved with multi-agent LLM best sample instruction generated for “Climate Activism Stance and
Hate Event Detection Shared Task” competition by fine-tuned Llama 2.

Data preprocessing:

. Clean and normalize the data, removing irrelevant or redundant information.

. Handle missing values and outliers appropriately.

Model architecture:

. Select a suitable machine learning algorithm for text classification based on the task’s requirements and data characteristics. Consider using natural
language processing (NLP) techniques.

Data splitting:

. Split the dataset into training, validation, and test sets to ensure proper model evaluation.

Model training and hyperparameter tuning:

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 20/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Table B.8 A sample instruction generated for “Stable Diffusion-Image to Prompts” competition by Code Llama-Instruct.

As a data analyst, I would start by preprocessing the image data to ensure that it is in a format that can be used for machine learning. This may involve
resizing the images, normalizing the pixel values, and possibly applying data augmentation techniques to increase the size of the dataset.

Once the data is preprocessed, I would then design a model architecture that is suitable for the task at hand. This may involve using a combination of
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to capture the relationships between text prompts and images.

To train the model, I would use a mean cosine similarity metric to measure the similarity between the predicted prompts and the actual prompts. I
would also use a technique called prompt engineering to ensure that the predicted prompts are robust and accurate. This involves using a
combination of techniques such as word embedding, attention mechanisms, and recurrent neural networks to improve the performance of the
model.

Overall, the goal of this task is to develop a model that can predict the text prompt that corresponds to a given generated image, and to explore the
relationship between text prompts and images in the context of text-to-image models. By using a combination of data preprocessing, model
architecture, and model training, I believe that we can achieve this goal and make significant contributions to the field of natural language processing
and computer vision.

Table B.7 (continued)

. Train the model on the training dataset, adjusting parameters to minimize error. Perform hyperparameter tuning to optimize model performance.

Evaluation:

. Calculate the F1-score to evaluate the model’s performance, ensuring it aligns with the competition’s metric type

Handling imbalanced data:

. Implement techniques to address imbalanced class distribution if necessary.

Table B.9 The best out of top-3 sample instruction generated for “Stable Diffusion-Image to Prompts” competition by fine-tuned Llama 2.

Data preprocessing:

. The training data consists of 100,000 images and their corresponding text prompts. The test data consists of 10,000 images and their corresponding
text prompts.

. The images are resized to a fixed size of 224 × 224 pixels. . The text prompts are tokenized using the tokenizer from the BERT model.

. The tokenized text prompts are converted to integers using the tokenizer’s convert tokens to ids method.

. The image IDs and text prompt IDs are stored in separate arrays.

Model architecture:

. The model architecture used is a BERT-based model.

. The BERT model is loaded from a pre-trained checkpoint.

. The BERT model is used as a feature extractor.

. The extracted features are passed through a linear layer with a sigmoid activation function.

. The sigmoid activation function is used to convert the output of the linear layer to a probability value.

Model training:

. The model is trained using the training data.

. The training data is split into training and validation sets.

. The model is trained using the Adam optimizer and a learning rate of 1e-5. The training process is repeated for a specified number of epochs.

. The model is evaluated on the validation set during training.

(Continued)

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 21/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Multi-agent LLM enriches the instructions by delving deeper and justifying the ML
steps. This enhancement contributes to the clarity of the instructions and adds a layer of
transparency, aiding users in understanding the rationale behind the suggested approach.
The collaborative synergy between fine-tuned Llama 2 and multi-agent LLM demonstrates
the potential for leveraging advanced models to refine and augment machine-generated
instructions.

Table B.9 (continued)

. The training and validation loss and accuracy are recorded.

Additional information:

. The model is saved after training.

. The saved model is loaded for use in the test data.

. The test data is passed through the model to generate predictions.

. The predicted text prompts are stored in a list.

. The predicted text prompts are then converted to integers using the tokenizer’s convert tokens to ids method.

. The predicted text prompts are saved in a submission file.

Table B.10 An automatically chosen and improved with multi-agent LLM best sample instruction generated for “Stable Diffusion—Image to
Prompts” competition by fine-tuned Llama 2.

Data preprocessing:

. Load the training and test data, ensuring that both image and text prompt data are correctly loaded and aligned.

. Apply any necessary data preprocessing, including handling missing values, cleaning the data, and addressing class imbalances if present.

. Perform image preprocessing, such as resizing and normalizing pixel values.

. Tokenize the text prompts using a suitable tokenizer, considering any specific requirements for this task.

. Convert tokenized text prompts into numerical representations (embeddings) using a method that captures the semantic meaning of the text
effectively.

Model architecture:

. Design a model architecture that combines image and text information effectively. Consider using a combination of convolutional neural networks
(CNNs) for image data and recurrent neural networks (RNNs) for text data.

. Implement a mechanism for merging or concatenating the image and text features within the model architecture.

. Utilize pre-trained embeddings or models if available and relevant to improve model performance.

Model training and evaluation:

. Split the training data into training and validation sets for model training. Implement a suitable validation strategy, such as k-fold cross-validation, to
assess model performance robustly.

. Train the model with appropriate hyperparameters, including learning rate, batch size, and optimizer choice. Monitor training with metrics relevant
to the task, such as mean cosine similarity.

. Implement early stopping to prevent overfitting and save the best-performing model during training.

. Evaluate the model using metrics like mean cosine similarity on the validation set to assess its performance.

. Consider strategies like learning rate schedules or fine-tuning pre-trained models to improve convergence and model generalization.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 22/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Table B.12 The best out of top-3 sample instruction generated for “Regression with a Tabular Paris Housing Price Dataset” competition by
fine-tuned Llama 2.

Data preprocessing:

-Read the training and testing data from CSV files.

-Check for missing values in the dataset and fill them with appropriate values. Perform exploratory data analysis to understand the distribution of
variables and any correlations.

-Transform categorical variables into numerical codes.

-Scale numerical variables using standard scaling techniques.

Model architecture:

-Define the model architecture using a suitable regression algorithm (e.g., Linear Regression, Ridge Regression, Lasso Regression, Elastic Net
Regression).

-Define the hyperparameters for the model (e.g., regularization strength, learning rate).

Model training:

-Split the data into training and testing sets.

-Train the model using the training data.

-Evaluate the model using the testing data.

-Fine-tune the model by adjusting the hyperparameters.

Model prediction:

-Use the trained model to predict the target variable for the testing data.

-Calculate the root mean squared error (RMSE) between the predicted values and the actual values.

-Save the predicted values in a CSV file for submission.

Note: The code provided is just an example and may need to be modified based on the specific requirements of the task

Table B.11 A sample instruction generated for “Regression with a Tabular Paris Housing Price Dataset” competition by Code Llama-Instruct.

As a data analyst, I would follow these steps to solve the regression problem with the tabular Paris housing price dataset:

Data preprocessing:

Check for missing values and handle them appropriately.Scale the data using a standard scaler or normalizer to ensure that all features are on the same
scale.Split the data into training and testing sets

Model architecture:

Use a linear regression model with a single hidden layer to predict the housing prices.The model should have an input layer with the number of
features in the dataset, a hidden layer with a suitable number of neurons, and an output layer with a single neuron.The model should also have an
activation function for the hidden layer, such as ReLU or tanh

Model training:

Train the model using the training set and evaluate its performance on the testing set using the RMSE metric.Adjust the hyperparameters of the model,
such as the learning rate, number of hidden neurons, and regularization strength, to improve the model’s performance.Repeat the training and
evaluation process until the model’s performance on the testing set is satisfactory.

By following these steps, I can help solve the regression problem with the tabular Paris housing price dataset using a linear regression model with a
single hidden layer.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 23/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

SAMPLE CODE GENERATED BY GPT-3.5 USING TASK
DESCRIPTIONS AND OUR REFINED INSTRUCTIONS.
Tables C.1 and C.2 represent the examples of code inferred by GPT-3.5 with two variations
of task-describing prompts: one with and one without the automatically chosen best
instruction. Using a pure task description prompt may result in incomplete ML code
generation, lacking an adequately defined model, for example. Conversely, when the task
description prompt is enriched with the instruction, GPT-3.5 is driven to produce
compilable results1.

Table B.13 An automatically chosen and improved with multi-agent LLM best sample instruction generated for “Regression with a Tabular
Paris Housing Price Dataset” competition by fine-tuned Llama 2.

Data preprocessing:

. Read the training and testing data from CSV files.

. Check for missing values in the dataset and fill them with appropriate values.

. Perform exploratory data analysis to understand the distribution of variables and any correlations.

. Handle categorical variables by transforming them into numerical codes or using one-hot encoding.

. Scale numerical variables using standard scaling techniques.

Model selection and training:

. Choose an appropriate regression algorithm considering the dataset’s characteristics. You may consider Linear Regression, Ridge Regression, Lasso
Regression, or Elastic Net Regression. The choice should be based on the nature of the problem, linearity assumptions, and potential
multicollinearity.

. Define the hyperparameters for the selected regression model. Pay attention to regularization strength, learning rate, and any other relevant
hyperparameters.

. Split the data into training and testing sets for model evaluation. Additionally, consider using cross-validation for a more robust assessment.

. Train the selected regression model using the training data. . Validate the model assumptions such as linearity, homoscedasticity, and independence
of errors.

. Evaluate the model using the testing data. Calculate the root mean squared error (RMSE) to assess the model’s predictive performance.

. Fine-tune the model by adjusting hyperparameters as needed to improve its performance.

Table C.1 Code parts generated for Kaggle competition “Stable Diffusion-Image to Prompts” with and without an enriched instruction
prompt.

Without instruction With instruction

import torch

import torchvision.transforms as transforms

from some_image_to_text_model import

ImageToTextModel

from some_text_embedding_model import

TextEmbeddingModel

import pandas as pd

Import necessary libraries

import tensorflow as tf

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

from tensorflow.keras.preprocessing.text import

Tokenizer

1 Throughout this article, ‘***’ indicates
code segments extracted by the authors.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 24/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Table C.1 (continued)

Without instruction With instruction

Load your pre-trained models

image_to_text_model = ImageToTextModel.

load_pretrained(′
path_to_image_to_text_model′)

text_embedding_model = TextEmbeddingModel.

load_pretrained (′
path_to_text_embedding_model′)

Function to predict prompt from image

def predict_prompt(image_path):

Load and preprocess the image

image = Image.open (image_path)

transform = transforms.Compose ([

transforms.Resize ((224, 224)),

transforms.ToTensor(),

])

image = transform(image).unsqueeze(0)

Use the model to predict the prompt

predicted_prompt = image_to_text_model.

predict (image)

return predicted_prompt

Function to convert prompt to embedding

def prompt_to_embedding(prompt):

Convert text prompt to embedding

embedding = text_embedding_model.encode

(prompt)
return embedding

from tensorflow.keras.layers import Input, Embedding,

LSTM, Conv2D, Flatten, concatenate

from tensorflow.keras.models import Model

Data Preprocessing

Load training and test data

train_data = pd.read_csv (′train_data.csv′)
test_data = pd.read_csv(′test_data.csv′)

Preprocess text prompts

tokenizer = Tokenizer()

tokenizer.fit_on_texts (train_data[′prompt′])

train_sequences = tokenizer.texts_to_sequences (

train_data[′prompt′])
test_sequences = tokenizer.texts_to_sequences (test_data[

′prompt′])

Pad sequences to a fixed length if necessary

max_seq_length = 20

train_sequences =tf.keras.preprocessing.sequence.

pad_sequences (train_sequences, maxlen=max_seq_length)

test_sequences = tf.keras.preprocessing.sequence.

pad_sequences (test_sequences, maxlen=max_seq_length)

Image preprocessing (resize, normalize)

image_size = (128, 128)

train_datagen = ImageDataGenerator (rescale=1./255,

validation_split = 0.2)

train_generator = train_datagen.flow_from_dataframe (***)

valid_generator = train_datagen.flow_from_dataframe (***)

Model Architecture

Define text input

text_input = Input (shape = (max_seq_length,))

text_embedding = Embedding (input_dim = len (tokenizer.

word_index) + 1, output_dim=128) (text_input)

text_lstm = LSTM(128) (text_embedding)

Define image input

image_input = Input(shape = (image_size[0], image_size [1],

3))

image_cnn = Conv2D(64, (3, 3), activation=′relu′)(
image_input)

image_flatten = Flatten()(image_cnn)

Table C.2 Code parts generated for Kaggle competition “Regression with a Tabular Paris Housing Price Dataset” with and without an
enriched instruction prompt.

Without instruction With instruction

import pandas as pd

from sklearn.model_selection import

train_test_split

from sklearn.ensemble import

RandomForestRegressor

from sklearn.metrics import mean_squared_error

import numpy as np

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression, Ridge, Lasso,

ElasticNet

(Continued)

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 25/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

LIST OF THE COMPETITIONS USED FOR VALIDATION.
This section provides a list of the competitions used to validate our approach. Table D.1
presents a mapping between competition IDs and their corresponding names. These
competitions, sourced from the Kaggle platform, represent a range of machine learning
tasks including regression, binary classification, and specialized problems like image-to-
prompt generation.

Table C.2 (continued)

Without instruction With instruction

Load the data

train_data = pd.read_csv (′train.csv′)

test_data = pd.read_csv(′test.csv′)
Separate features and target

X = train_data.drop (′price′, axis=1)

y = train_data [′price′]
Split the data into training and validation

sets

X_train, X_val, y_train, y_val =

train_test_split (X, y, test_size = 0.2,

random_state=42)

Initialize the model

model = RandomForestRegressor

(random_state=42)

Train the model

model.fit (X_train, y_train)

Predict on validation set

val_predictions = model.predict (X_val)

Calculate RMSE

rmse = np.sqrt(mean_squared_error (y_val,

val_predictions))

print (f′Validation RMSE: rmse′)
Predict on test data

test_predictions = model.predict (test_data)

from sklearn.metrics import mean_squared_error

Data Preprocessing

1. Read the training and testing data from CSV files.

train_data = pd.read_csv (′train.csv′)
test_data = pd.read_csv (′test.csv′)

test_data = pd.read_csv (′test.csv′)
2. Check for missing values in the dataset and fill them with

appropriate values.

train_data.fillna(train_data.mean(), inplace = True)

test_data.fillna (test_data.mean(), inplace=True)

5. Scale numerical variables using standard scaling techniques.

scaler = StandardScaler()

train_data [[′squareMeters′, ′numberOfRooms′, ′floors′, ′
numPrevOwners′, ′made′, ′garage′]] = \

scaler.fit_transform (train_data [[′squareMeters′, ′
numberOfRooms′, ′floors′, ′numPrevOwners′, ′made′, ′garage′]])

test_data*** = \

scaler.transform (***)

Model Selection and Training

1. Choose an appropriate regression algorithm considering the dataset′

s characteristics.

Let′s use Ridge Regression as an example.

regression_model = Ridge (alpha=1.0) # You can adjust alpha as needed.

3. Split the data into training and testing sets for model evaluation.

X = train_data.drop (columns=[′id′, ′price′])
y = train_data[′price′]
X_train, X_test, y_train, y_test = train_test_split (X, y

, test_size = 0.2, random_state = 42)

4. Train the selected regression model using the training data.

regression_model.fit (X_train, y_train)

5. Evaluate the model using the testing data.

y_pred = regression_model.predict (X_test)

rmse = np.sqrt (mean_squared_error (y_test, y_pred))

print (f′Root Mean Squared Error (RMSE): {rmse}′)
Model Prediction and Submission

1. Use the trained model to predict the target variable for the testing

data.

test_features = test_data.drop (columns=[′id′])
predicted_prices = regression_model.predict (

; test_features)

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 26/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
We would like to express our appreciation to Denis Derkach and ArtemMaevskiy for their
invaluable comments and support.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The reported study utilized the supercomputer resources of the National Research
University Higher School of Economics. The research leading to these results has received
funding from the Russian Science Foundation under grant agreement n°19-71-30020. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Research University Higher School of Economics.
Russian Science Foundation: n°19-71-30020.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Ekaterina Trofimova conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

. Emil Sataev performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, and approved the final draft.

. Andrey Ustyuzhanin conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Table D.1 Competition ID to competition name mapping.

Competition Id Competition name

C1 “Feature imputation with a heat flux dataset” (Reade & Chow, 2023a)

C2 “Binary classification of machine failures” (Reade & Chow, 2023b)

C3 Predict CO2 emissions in rwanda (Moruri et al., 2023)

C4 CommonLit - evaluate student summaries (Franklin, 2023)

C5 Binary classification with a tabular credit card fraud dataset (Reade & Chow, 2023c)

C6 Stable diffusion-image to prompts (Reade, Cukierski & Chow, 2023)

C7 Regression with a tabular california housing dataset (Reade & Chow, 2023d)

C8 Regression with a crab age dataset (Reade & Chow, 2023e)

C9 Regression with a wild blueberry yield dataset (Reade & Chow, 2023g)

C10 Binary classification with a bank churn dataset (Reade & Chow, 2024)

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 27/32

http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The used dataset is open-access Code4ML corpus available at Zenodo: Anastasia
Drozdova, Polina Guseva, Ekaterina Trofimova, Anna Scherbakova, Andrey Ustyuzhanin,
Anastasia Gorodilova, & Valeriy Berezovskiy. (2022). Code4ML: a Large-scale Dataset of
annotated Machine Learning Code (1.0.1) [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.7733823.

The code is available at Zenodo: Ekaterina Trofimova, & Deltax2016. (2024). ketrint/
Linguacodus: v1.0.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.13283827.

REFERENCES
Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Achiam J, Adler S, Agarwal S,

Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S, Anadkat S, Avila R,
Babuschkin I, Balaji S, Balcom V, Baltescu P, Bao H, Bavarian M, Belgum J, Bello I, Berdine
J, Bernadett-Shapiro G, Berner C, Bogdonoff L, Boiko O, Boyd M, Brakman A-L, Brockman
G, Brooks T, Brundage M, Button K, Cai T, Campbell R, Cann A, Carey B, Carlson C,
Carmichael R, Chan B, Chang C, Chantzis F, Chen D, Chen S, Chen R, Chen J, Chen M,
Chess B, Cho C, Chu C, Won Chung H, Cummings D, Currier J, Dai Y, Decareaux C, Degry
T, Deutsch N, Deville D, Dhar A, Dohan D, Dowling S, Dunning S, Ecoffet A, Eleti A,
Eloundou T, Farhi D, Fedus L, Felix N, Fishman SP, Forte J, Fulford I, Gao L, Georges E,
Gibson C, Goel V, Gogineni T, Goh G, Gontijo-Lopes R, Gordon J, Grafstein M, Gray S,
Greene R, Gross J, Shane Gu S, Guo Y, Hallacy C, Han J, Harris J, He Y, Heaton M, Heidecke
J, Hesse C, Hickey A, Hickey W, Hoeschele P, Houghton B, Hsu K, Hu S, Hu X, Huizinga J,
Jain S, Jain S, Jang J, Jiang A, Jiang R, Jin H, Jin D, Jomoto S, Jonn B, Jun H, Kaftan T,
Kaiser Ł, Kamali A, Kanitscheider I, Keskar NS, Khan T, Kilpatrick L, Wook Kim J, Kim C,
Kim Y, Kirchner JH, Kiros J, Knight M, Kokotajlo D, Kondraciuk Ł, Kondrich A,
Konstantinidis A, Kosic K, Krueger G, Kuo V, Lampe M, Lan I, Lee T, Leike J, Leung J, Levy
D, Li CM, Lim R, Lin M, Lin S, Litwin M, Lopez T, Lowe R, Lue P, Makanju A, Malfacini K,
Manning S, Markov T, Markovski Y, Martin B, Mayer K, Mayne A, McGrew B, McKinney
SM, McLeavey C, McMillan P, McNeil J, Medina D, Mehta A, Menick J, Metz L, Mishchenko
A, Mishkin P, Monaco V, Morikawa E, Mossing D, Mu T, Murati M, Murk O, Mély D, Nair
A, Nakano R, Nayak R, Neelakantan A, Ngo R, Noh H, Ouyang L, O'Keefe C, Pachocki J,
Paino A, Palermo J, Pantuliano A, Parascandolo G, Parish J, Parparita E, Passos A, Pavlov
M, Peng A, Perelman A, de Avila Belbute Peres F, Petrov M, de Oliveira Pinto HP, Pokorny
M, Pokrass M, Pong VH, Powell T, Power A, et al. 2023.Gpt-4 technical report. ArXiv preprint
DOI 10.48550/arXiv.2303.08774.

Agashe R, Iyer S, Zettlemoyer L. 2019. JuICe: a large scale distantly supervised dataset for open
domain context-based code generation. ArXiv preprint DOI 10.48550/arXiv.1910.02216.

Allamanis M, Barr ET, Devanbu P, Sutton C. 2018. A survey of machine learning for big code and
naturalness. ACM Computing Surveys (CSUR) 51(4):1–37 DOI 10.1145/3212695.

Alpaydin E. 2021. Machine learning. Cambridge: MIT Press.

Anil R, Dai AM, Firat O, Johnson M, Lepikhin D, Passos A, Anil R, Dai AM, Firat O, Johnson
M, Lepikhin D, Passos A, Shakeri S, Taropa E, Bailey P, Chen Z, Chu E, Clark JH, Shafey LEl,
Huang Y, Meier-Hellstern K, Mishra G, Moreira E, Omernick M, Robinson K, Ruder S, Tay
Yi, Xiao K, Xu Y, Zhang Y, Abrego GH, Ahn J, Austin J, Barham P, Botha J, Bradbury J,
Brahma S, Brooks K, Catasta M, Cheng Y, Cherry C, Choquette-Choo CA, Chowdhery A,
Crepy Clé, Dave S, Dehghani M, Dev S, Devlin J, Díaz M, Du N, Dyer E, Feinberg V, Feng F,

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 28/32

https://doi.org/10.5281/zenodo.7733823
https://doi.org/10.5281/zenodo.7733823
https://doi.org/10.5281/zenodo.13283827
http://dx.doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.48550/arXiv.1910.02216
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Fienber V, Freitag M, Garcia X, Gehrmann S, Gonzalez L, Gur-Ari G, Hand S, Hashemi H,
Hou Le, Howland J, Hu A, Hui J, Hurwitz J, Isard M, Ittycheriah A, Jagielski M, Jia W,
Kenealy K, Krikun M, Kudugunta S, Lan C, Lee K, Lee B, Li E, Li M, Li W, Li YaG, Li J, Lim
H, Lin H, Liu Z, Liu F, Maggioni M, Mahendru A, Maynez J, Misra V, Moussalem M, Nado
Z, Nham J, Ni E, Nystrom A, Parrish A, Pellat M, Polacek M, Polozov A, Pope R, Qiao S, Reif
E, Richter B, Riley P, Castro Ros A, Roy A, Saeta B, Samuel R, Shelby R, Slone A, Smilkov D,
So DR, Sohn D, Tokumine S, Valter D, Vasudevan V, Vodrahalli K, Wang X, Wang P, Wang
Z, Wang T, Wieting J, Wu Y, Xu K, Xu Y, Xue L, Yin P, Yu J, Zhang Q, Zheng S, Zheng C,
Zhou W, Zhou D, Petrov S, Wu Y. 2023. Palm 2 technical report. ArXiv preprint
DOI 10.48550/arXiv.2305.10403.

Berezovskiy V, Gorodilova A, Trofimova E, Ustyuzhanin A. 2023. Machine learning code
snippets semantic classification. PeerJ Computer Science 9(1):e1654 DOI 10.7717/peerj-cs.1654.

Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Bubeck S,
Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S,
Nori H, Palangi H, Ribeiro MT, Zhang Y. 2023. Sparks of artificial general intelligence: early
experiments with gpt-4. ArXiv preprint DOI 10.48550/arXiv.2303.12712.

Buse RP, Weimer W. 2012. Synthesizing API usage examples. In: 2012 34th International
Conference on Software Engineering (ICSE). Piscataway: IEEE, 782–792.

Chandel Sh, Clement CB, Serrato G, Sundaresan N. 2022. Training and evaluating a jupyter
notebook data science assistant. ArXiv preprint DOI 10.48550/arXiv.2201.12901.

Chen M, Tworek J, Jun H, Yuan Q, Pinto HPDO, Kaplan J, Chen M, Tworek J, Jun H, Yuan Q,
de Oliveira Pinto HP, Kaplan J, Edwards H, Burda Y, Joseph N, Brockman G, Ray A, Puri R,
Krueger G, Petrov M, Khlaaf H, Sastry G, Mishkin P, Chan B, Gray S, Ryder N, Pavlov M,
Power A, Kaiser L, Bavarian M, Winter C, Tillet P, Such FP, Cummings D, Plappert M,
Chantzis F, Barnes E, Herbert-Voss A, Guss WH, Nichol A, Paino A, Tezak N, Tang J,
Babuschkin I, Balaji S, Jain S, Saunders W, Hesse C, Carr AN, Leike J, Achiam J, Misra V,
Morikawa E, Radford A, Knight M, Brundage M, Murati M, Mayer K, Welinder P, McGrew
B, Amodei D, McCandlish S, Sutskever I, ZarembaW. 2021. Evaluating large language models
trained on code. ArXiv preprint DOI 10.48550/arXiv.2107.03374.

Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Chowdhery A, Narang S,
Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehrmann S,
Schuh P, Shi K, Tsvyashchenko S, Maynez J, Rao A, Barnes P, Tay Yi, Shazeer N,
Prabhakaran V, Reif E, Du N, Hutchinson B, Pope R, Bradbury J, Austin J, Isard M, Gur-Ari
G, Yin P, Duke T, Levskaya A, Ghemawat S, Dev S, Michalewski H, Garcia X, Misra V,
Robinson K, Fedus L, Zhou D, Ippolito D, Luan D, Lim H, Zoph B, Spiridonov A, Sepassi R,
Dohan D, Agrawal S, Omernick M, Dai AM, Pillai TS, Pellat M, Lewkowycz A, Moreira E,
Child R, Polozov O, Lee K, Zhou Z, Wang X, Saeta B, Diaz M, Firat O, Catasta M, Wei J,
Meier-Hellstern K, Eck D, Dean J, Petrov S, Fiedel N. 2023. Palm: scaling language modeling
with pathways. Journal of Machine Learning Research 24(240):1–113.

Desai A, Gulwani S, Hingorani V, Jain N, Karkare A, Marron M, Roy S. 2016. Program synthesis
using natural language. In: Proceedings of the 38th International Conference on Software
Engineering. 345–356.

Devlin J, Chang MW, Lee K, Toutanova K. 2018. Bert: pre-training of deep bidirectional
transformers for language understanding. ArXiv preprint DOI 10.48550/arXiv.1810.04805.

Drozdova A, Trofimova E, Guseva P, Scherbakova A, Ustyuzhanin A. 2023. Code4ML: a large-
scale dataset of annotated machine learning code. PeerJ Computer Science 9(4):e1230
DOI 10.7717/peerj-cs.1230.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 29/32

http://dx.doi.org/10.48550/arXiv.2305.10403
http://dx.doi.org/10.7717/peerj-cs.1654
http://dx.doi.org/10.48550/arXiv.2303.12712
http://dx.doi.org/10.48550/arXiv.2201.12901
http://dx.doi.org/10.48550/arXiv.2107.03374
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.7717/peerj-cs.1230
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, Smola A. 2020. Autogluon-tabular:
robust and accurate automl for structured data. ArXiv preprint DOI 10.48550/arXiv.2003.06505.

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Feng Z, Guo D, Tang D, Duan N, Feng X,
Gong M, Shou L, Qin B, Liu T, Jiang D, Zhou M. 2020. Codebert: a pre-trained model for
programming and natural languages. ArXiv preprint DOI 10.48550/arXiv.2002.08155.

Franklin A. 2023. CommonLit—Evaluate Student Summaries. Kaggle. Available at https://kaggle.
com/competitions/commonlit-evaluate-student-summaries.

Gulwani S, Polozov O, Singh R. 2017. Program synthesis. Foundations and Trends� in
Programming Languages 4(1–2):1–119 DOI 10.1561/2500000010.

Harel D, Lachover H, Naamad A, Pnueli A, Politi M, Sherman R, Shtull-Trauring A,
Trakhtenbrot M. 1990. Statemate: a working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering 16(4):403–414
DOI 10.1109/32.54292.

Jung A. 2022. Machine learning: the basics. London: Springer Nature.

Keskar NS, McCann B, Varshney LR, Xiong C, Socher R. 2019. Ctrl: a conditional transformer
language model for controllable generation. ArXiv preprint DOI 10.48550/arXiv.1909.05858.

Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Kluyver T, Ragan-
Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay
S, Ivanov P, Avila Dá, Abdalla S, Willing. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows. Elpub 2016:87–90 DOI 10.3233/978-1-61499-649-1-87.

Knuth DE. 1968. Semantics of context-free languages.Mathematical Systems Theory 2(2):127–145
DOI 10.1007/BF01692511.

LeDell E, Poirier S. 2020. H2o automl: scalable automatic machine learning. In: Proceedings of the
AutoML Workshop at ICML. San Diego, CA, USA: ICML.

Lei T, Long F, Barzilay R, Rinard M. 2013. From natural language specifications to program input
parsers. In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 1294–1303.

Li Y, Choi D, Chung J, Kushman N, Schrittwieser J, Leblond R, Eccles T, Keeling J, Gimeno F,
Dal Lago A, Hubert T, Choy P, de Masson d’Autume C, Babuschkin I, Chen X, Huang P-S,
Welbl J, Gowal S, Cherepanov A, Molloy J, Mankowitz DJ, Sutherland Robson E, Kohli P, de
Freitas N, Kavukcuoglu K, Vinyals O. 2022. Competition-level code generation with
alphacode. Science 378(6624):1092–1097 DOI 10.1126/science.abq1158.

Ling W, Grefenstette E, Hermann KM, Kočiský T, Senior A, Wang F, Blunsom P. 2016. Latent
predictor networks for code generation. ArXiv preprint DOI 10.48550/arXiv.1603.06744.

Liu H, Shen M, Zhu J, Niu N, Li G, Zhang L. 2020. Deep learning based program generation from
requirements text: are we there yet? IEEE Transactions on Software Engineering 48(4):1268–
1289 DOI 10.1109/TSE.2020.3018481.

Moruri D, Bray A, Reade W, Chow A. 2023. Predict CO2 Emissions in Rwanda. Kaggle. Available
at https://kaggle.com/competitions/playground-series-s3e20.

Nair V, Schumacher E, Tso G, Kannan A. 2023. DERA: enhancing large language model
completions with dialog-enabled resolving agents. ArXiv preprint
DOI 10.48550/arXiv.2303.17071.

Pavao A, Guyon I, Letournel AC, Tran DT, Baro X, Escalante HJ, Pavao A, Guyon I, Letournel
A-C, Tran D-T, Baro X, Escalante HJ, Escalera S, Thomas T, Xu Z. 2023. Codalab
competitions: an open source platform to organize scientific challenges. Journal of Machine
Learning Research 24(198):1–6.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 30/32

http://dx.doi.org/10.48550/arXiv.2003.06505
http://dx.doi.org/10.48550/arXiv.2002.08155
https://kaggle.com/competitions/commonlit-evaluate-student-summaries
https://kaggle.com/competitions/commonlit-evaluate-student-summaries
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1109/32.54292
http://dx.doi.org/10.48550/arXiv.1909.05858
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.48550/arXiv.1603.06744
http://dx.doi.org/10.1109/TSE.2020.3018481
https://kaggle.com/competitions/playground-series-s3e20
http://dx.doi.org/10.48550/arXiv.2303.17071
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Rabinovich M, Stern M, Klein D. 2017. Abstract syntax networks for code generation and
semantic parsing. ArXiv preprint DOI 10.48550/arXiv.1704.07535.

Radford A, Narasimhan K, Salimans T, Sutskever I. 2018. Improving language understanding by
generative pre-training. Available at https://api.semanticscholar.org/CorpusID:49313245.

Raychev V, Vechev M, Yahav E. 2014. Code completion with statistical language models. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 419–428.

Reade W, Chow A. 2023a. Feature imputation with a heat flux dataset. Kaggle. Available at https://
kaggle.com/competitions/playground-series-s3e15.

Reade W, Chow A. 2023b. Binary classification of machine failures. Retrieved from. Available at
https://kaggle.com/competitions/playground-series-s3e17.

Reade W, Chow A. 2023c. Binary classification with a tabular credit card fraud dataset.
Kaggle. Available at https://kaggle.com/competitions/playground-series-s3e4.

Reade W, Chow A. 2023d. Regression with a tabular california housing dataset. Kaggle. Available
at https://kaggle.com/competitions/playground-series-s3e1.

Reade W, Chow A. 2023e. Regression with a crab age dataset. Kaggle. Available at https://kaggle.
com/competitions/playground-series-s3e16.

Reade W, Chow A. 2023f. Regression with a tabular paris housing price dataset. Kaggle. Available
at https://kaggle.com/competitions/playground-series-s3e6.

Reade W, Chow A. 2023g. Regression with a wild blueberry yield dataset. Kaggle. Available at
https://kaggle.com/competitions/playground-series-s3e14.

Reade W, Chow A. 2024. Binary classification with a bank churn dataset. Kaggle. Available at
https://kaggle.com/competitions/playground-series-s4e1.

Reade W, Cukierski W, Chow A. 2023. Stable diffusion-image to prompts. Kaggle. Available at
https://kaggle.com/competitions/stable-diffusion-image-to-prompts.

Roziere B, Gehring J, Gloeckle F, Sootla S, Gat I, Tan XE, Rozière B, Gehring J, Gloeckle F,
Sootla S, Gat I, Tan XE, Adi Y, Liu J, Sauvestre R, Remez T, Rapin J, Kozhevnikov A,
Evtimov I, Bitton J, Bhatt M, Ferrer CC, Grattafiori A, Xiong W, Défossez A, Copet J, Azhar
F, Touvron H, Martin L, Usunier N, Scialom T, Synnaeve G. 2023. Code llama: open
foundation models for code. ArXiv preprint DOI 10.48550/arXiv.2308.12950.

Shen Y, Song K, Tan X, Li D, Lu W, Zhuang Y. 2024. Hugginggpt: solving ai tasks with chatgpt
and its friends in hugging face. Advances in Neural Information Processing Systems 36:.

Song Y, Lothritz C, Tang D, Bissyandé T, Klein J. 2024. Revisiting code similarity evaluation with
abstract syntax tree edit distance. ArXiv preprint DOI 10.48550/arXiv.2404.08817.

Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Touvron H, Martin L, Stone K,
Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S, Bikel D,
Blecher L, Ferrer CC, Chen M, Cucurull G, Esiobu D, Fernandes J, Fu J, Fu W, Fuller B, Gao
C, Goswami V, Goyal N, Hartshorn A, Hosseini S, Hou R, Inan H, Kardas M, Kerkez V,
Khabsa M, Kloumann I, Korenev A, Koura PS, Lachaux M-A, Lavril T, Lee J, Liskovich D, Lu
Y, Mao Y, Martinet X, Mihaylov T, Mishra P, Molybog I, Nie Y, Poulton A, Reizenstein J,
Rungta R, Saladi K, Schelten A, Silva R, Michael Smith E, Subramanian R, Ellen Tan X, Tang
B, Taylor R, Williams A, Xiang Kuan J, Xu P, Yan Z, Zarov I, Zhang Y, Fan A, Kambadur M,
Narang S, Rodriguez A, Stojnic R, Edunov S, Scialom T. 2023. Llama 2: open foundation and
fine-tuned chat models. ArXiv preprint DOI 10.48550/arXiv.2307.09288.

Trofimova E, Sataev E, Ustyuzhanin AE. 2024. Linguacodus: a synergistic framework for
transformative code generation in machine learning pipelines. ArXiv preprint
DOI 10.48550/arXiv.2403.11585.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 31/32

http://dx.doi.org/10.48550/arXiv.1704.07535
https://api.semanticscholar.org/CorpusID:49313245
https://kaggle.com/competitions/playground-series-s3e15
https://kaggle.com/competitions/playground-series-s3e15
https://kaggle.com/competitions/playground-series-s3e17
https://kaggle.com/competitions/playground-series-s3e4
https://kaggle.com/competitions/playground-series-s3e1
https://kaggle.com/competitions/playground-series-s3e16
https://kaggle.com/competitions/playground-series-s3e16
https://kaggle.com/competitions/playground-series-s3e6
https://kaggle.com/competitions/playground-series-s3e14
https://kaggle.com/competitions/playground-series-s4e1
https://kaggle.com/competitions/stable-diffusion-image-to-prompts
http://dx.doi.org/10.48550/arXiv.2308.12950
http://dx.doi.org/10.48550/arXiv.2404.08817
http://dx.doi.org/10.48550/arXiv.2307.09288
http://dx.doi.org/10.48550/arXiv.2403.11585
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

Vaithilingam P, Zhang T, Glassman EL. 2022. Expectation vs. experience: evaluating the usability
of code generation tools powered by large language models. In: Chi conference on Human
Factors in Computing Systems Extended Abstracts, 1–7.

Vakhrushev A, Ryzhkov A, Savchenko M, Simakov D, Damdinov R, Tuzhilin A. 2021.
Lightautoml: automl solution for a large financial services ecosystem. ArXiv preprint
DOI 10.48550/arXiv.2109.01528.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I.
2017. Attention is all you need. Advances in Neural Information Processing Systems
30:arXiv:1706.03762.

Wang S, Geng M, Lin B, Sun Z, WenM, Liu Y, Wang S, Geng M, Lin B, Sun Z, WenM, Liu Y, Li
Li, Bissyandé TF, Mao X. 2023. Natural language to code: how far are we? In: Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 375–387.

Wen Y, Yin P, Shi K, Michalewski H, Chaudhuri S, Polozov A. 2024. Grounding data science
code generation with input-output specifications. ArXiv preprint
DOI 10.48550/arXiv.2402.08073.

Winograd T. 1972. Understanding natural language. Cognitive Psychology 3(1):1–191
DOI 10.1016/0010-0285(72)90002-3.

Yin P, Li WD, Xiao K, Rao A, Wen Y, Shi K, Yin P, Li WD, Xiao K, Rao A, Wen Y, Shi K,
Howland J, Bailey P, Catasta M, Michalewski H, Polozov A, Sutton C. 2022.Natural language
to code generation in interactive data science notebooks. ArXiv preprint
DOI 10.48550/arXiv.2212.09248.

Yin P, Neubig G. 2017. A syntactic neural model for general-purpose code generation. ArXiv
preprint DOI 10.48550/arXiv.1704.01696.

Yin P, Neubig G. 2018. TRANX: a transition-based neural abstract syntax parser for semantic
parsing and code generation. ArXiv preprint DOI 10.48550/arXiv.1810.02720.

Zhang J, Panthaplackel S, Nie P, Li JJ, Gligoric M. 2022. Coditt5: pretraining for source code and
natural language editing. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 1–12.

Zheng L, Chiang WL, Sheng Y, Zhuang S, Wu Z, Zhuang Y, Zheng L, Chiang WL, Sheng Y,
Zhuang S, Wu Z, Zhuang Y, Lin Zi, Li Z, Li D, Xing EP, Zhang H, Gonzalez JE, Stoica I.
2024. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems 36:arXiv:2306.05685.

Zhu Y, Lu S, Zheng L, Guo J, Zhang W, Wang J, Yu Y. 2018. Texygen: a benchmarking platform
for text generation models. In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, 1097–1100.

Trofimova et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2328 32/32

http://dx.doi.org/10.48550/arXiv.2109.01528
http://dx.doi.org/10.48550/arXiv.2402.08073
http://dx.doi.org/10.1016/0010-0285(72)90002-3
http://dx.doi.org/10.48550/arXiv.2212.09248
http://dx.doi.org/10.48550/arXiv.1704.01696
http://dx.doi.org/10.48550/arXiv.1810.02720
http://dx.doi.org/10.7717/peerj-cs.2328
https://peerj.com/computer-science/

	Linguacodus: a synergistic framework for transformative code generation in machine learning pipelines
	Introduction
	Related work
	Methodology
	Experimental results and analysis
	Discussion
	Limitations
	Future work
	Conclusion
	llama 2 fine-tuning details
	sample instructions inferred by code llama-instruct and fine-tuned llama 2
	sample code generated by gpt-3.5 using task descriptions and our refined instructions.
	list of the competitions used for validation.
	flink13
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

